ALGEBRA LINEARE E GEOMETRIA |
Codice
|
1000998 |
Lingua
|
ITA |
Tipo di attestato
|
Attestato di profitto |
Crediti
|
9
|
Settore scientifico disciplinare
|
MAT/03
|
Ore Aula
|
49
|
Ore Esercitazioni
|
30
|
Attività formativa
|
Attività formative di base
|
Canale: A - E
Docente
|
ZAPPALA' Giuseppe
(programma)
Algebra Lineare:
Generalità sugli insiemi, operazioni. Applicazioni tra insiemi, immagine e controimmagine, iniettività, suriettività, applicazioni biettive. Insiemi con operazioni, le principali strutture geometriche: gruppi, anelli, campi. I vettori dello spazio ordinario. Somma di vettori, prodotto di un numero per un vettore. Prodotto scalare, prodotto vettoriale, prodotto misto. Componenti dei vettori ed operazioni mediante componenti. I numeri complessi, operazioni e proprietà. Forma algebrica e forma trigonometrica dei numeri complessi. Formula di Moivre. Radici n-esime dei numeri complessi. Spazi vettoriali e loro proprietà. Esempi. Sottospazi. Intersezione, unione e somma di sottospazi. Indipendenza lineare, relativo criterio. Generatori di uno spazio. Base di uno spazio, metodo degli scarti successivi, completamento ad una base. Lemma di Steinitz*, dimensione di uno spazio vettoriale. Formula di Grassmann*. Somme dirette. Generalità sulle matrici. Rango. Matrici ridotte e metodo di riduzione. Matrici elementari. Prodotto di matrici. Sistemi lineari, teorema di Rouché-Capelli. Risoluzione dei sistemi lineari col metodo di riduzione (di Gauss), incognite libere. Inversa di una matrice quadrata. Sistemi omogenei e sottospazio delle soluzioni. Determinanti e loro proprietà. I teoremi di Laplace*. Calcolo dell'inversa di una matrice quadrata. Teorema di Binet*. Teorema di Cramer. Teorema di Kronecker*. Applicazioni lineari e loro proprietà. Nucleo ed immagine di un'applicazione lineare. Iniettività, suriettività, isomorfismi. Lo spazio L(V,W), suo isomorfismo* con K^{m,n}. Studio delle applicazioni lineari. Cambio di base, matrici simili. Autovalori, autovettori ed autospazi di un endomorfismo. Polinomio caratteristico. Dimensione degli autospazi. Indipendenza degli autovettori. Endomorfismi semplici e diagonalizzazione di matrici.
Geometria:
Geometria lineare nel piano. Coordinate cartesiane e coordinate omogenee. Rette e loro equazioni. Intersezioni tra rette. Coefficiente angolare. Distanze. Fasci di rette. Geometria lineare nello spazio. Coordinate cartesiane e coordinate omogenee. I piani e loro equazioni. Le rette, loro rappresentazione. Elementi impropri. Proprietà angolari di rette e piani. Distanze. Fasci di piani. Cambiamenti di coordinate nel piano, rotazioni e traslazioni. Coniche e matrici associate, invarianti ortogonali. Equazioni ridotte, riduzione di una conica a forma canonica. Classificazione delle coniche irriducibili. Studio delle coniche in forma canonica. Circonferenze. Rette tangenti. Fasci di coniche e loro uso per determinare coniche particolari. Quadriche nello spazio e matrici associate. Quadriche irriducibili. Vertici e quadriche degeneri. Coni e cilindri, loro sezioni. Equazioni ridotte, riduzione di una quadrica a forma canonica. Classificazione delle quadriche non degeneri. Sezioni di quadriche con rette e piani. Rette e piani tangenti.
Le dimostrazioni dei teoremi contrassegnati con * si possono omettere.
1. S. Giuffrida, A. Ragusa: Corso di Algebra Lineare. Il Cigno Galileo Galilei, Roma, 1998.
2. Lezioni di Geometria. Spazio Libri, Catania, 2000.
3. P. Bonacini, M. G. Cinquegrani, L. Marino. Algebra lineare: esercizi svolti. Cavallotto Edizioni, Catania, 2012.
4. P. Bonacini, M. G. Cinquegrani, L. Marino. Geometria analitica: esercizi svolti. Cavallotto Edizioni, Catania, 2012.
5.E. Sernesi. Geometria 1. Bollati Boringhieri, 2000.
|
Date di inizio e termine delle attività didattiche
|
Dal al |
Modalità di frequenza
|
Non obbligatoria
|
Canale: F - O
Docente
|
STAGLIANO' GIOVANNI
(programma)
Algebra Lineare:
Generalità sugli insiemi, operazioni. Applicazioni tra insiemi, immagine e controimmagine, iniettività, suriettività, applicazioni biettive. Insiemi con operazioni, le principali strutture algebriche: gruppi, anelli, campi. I vettori dello spazio ordinario. Somma di vettori, prodotto di un numero per un vettore. Prodotto scalare, prodotto vettoriale, prodotto misto. Componenti dei vettori ed operazioni mediante componenti. I numeri complessi, operazioni e proprietà. Forma algebrica e forma trigonometrica dei numeri complessi. Formula di Moivre. Radici n-esime dei numeri complessi. Spazi vettoriali e loro proprietà. Esempi. Sottospazi. Intersezione, unione e somma di sottospazi. Indipendenza lineare, relativo criterio. Generatori di uno spazio. Base di uno spazio, metodo degli scarti successivi, completamento ad una base. Lemma di Steinitz*, dimensione di uno spazio vettoriale. Formula di Grassmann*. Somme dirette. Generalità sulle matrici. Rango. Matrici ridotte e metodo di riduzione. Matrici elementari. Prodotto di matrici. Sistemi lineari, teorema di Rouché-Capelli. Risoluzione dei sistemi lineari col metodo di riduzione (di Gauss), incognite libere. Inversa di una matrice quadrata. Sistemi omogenei e sottospazio delle soluzioni. Determinanti e loro proprietà. I teoremi di Laplace*. Calcolo dell'inversa di una matrice quadrata. Teorema di Binet*. Teorema di Cramer. Teorema di Kronecker*. Applicazioni lineari e loro proprietà. Nucleo ed immagine di un'applicazione lineare. Iniettività, suriettività, isomorfismi. Lo spazio L(V,W), suo isomorfismo* con K^{m,n}. Studio delle applicazioni lineari. Cambio di base, matrici simili. Autovalori, autovettori ed autospazi di un endomorfismo. Polinomio caratteristico. Dimensione degli autospazi. Indipendenza degli autovettori. Endomorfismi semplici e diagonalizzazione di matrici.
Geometria:
Geometria lineare nel piano. Coordinate cartesiane. Rette e loro equazioni. Intersezioni tra rette. Coefficiente angolare. Distanze. Fasci di rette. Geometria lineare nello spazio. Coordinate cartesiane. I piani e loro equazioni. Le rette, loro rappresentazione. Proprietà angolari di rette e piani. Distanze. Fasci di piani. Cambiamenti di coordinate nel piano, rotazioni e traslazioni. Coniche e matrici associate, invarianti ortogonali. Equazioni ridotte, riduzione di una conica a forma canonica. Classificazione delle coniche irriducibili. Studio delle coniche in forma canonica. Circonferenze. Rette tangenti. Fasci di coniche e loro uso per determinare coniche particolari. Quadriche nello spazio e matrici associate. Quadriche irriducibili. Vertici e quadriche degeneri. Coni e cilindri, loro sezioni. Equazioni ridotte, riduzione di una quadrica a forma canonica. Classificazione delle quadriche non degeneri. Sezioni di quadriche con rette e piani. Rette e piani tangenti.
Le dimostrazioni dei teoremi contrassegnati con * si possono omettere.
1. S. Giuffrida, A. Ragusa. Corso di Algebra Lineare con Esercizi Svolti. Il Cigno Galileo Galilei, Roma, 1998.
2. M. Abate, C. de Fabritis. Geometria analitica con elementi di algebra lineare. McGraw-Hill Education, 2015.
3. E. Sernesi. Geometria 1. Bollati Boringhieri, 2000.
4. F. Russo. Geometria degli enti lineari e delle quadriche. Note per il Corso di Algebra Lineare e Geometria di Ingegneria.
5. P. Bonacini, M. G. Cinquegrani, L. Marino. Algebra lineare: esercizi svolti. Cavallotto Edizioni, Catania, 2012. 6. P. Bonacini, M. G. Cinquegrani, L. Marino. Geometria analitica: esercizi svolti. Cavallotto Edizioni, Catania, 2012.
|
Date di inizio e termine delle attività didattiche
|
Dal al |
Modalità di frequenza
|
Non obbligatoria
|
Canale: P - Z
Docente
|
LA BARBIERA MONICA
(programma)
Algebra Lineare: 1. Generalità sugli insiemi, operazioni. Applicazioni tra insiemi, immagine e controimmagine, iniettività, suriettività, applicazioni biettive. Insiemi e strutture geometriche (gruppi, anelli, campi).
2. I vettori dello spazio ordinario. Somma di vettori, prodotto di un numero per un vettore. Prodotto scalare, prodotto vettoriale, prodotto misto. Componenti dei vettori ed operazioni mediante componenti.
3. Spazi vettoriali e loro proprietà. Esempi. Sottospazi. Intersezione, unione e somma di sottospazi. Indipendenza lineare, relativo criterio. Generatori di uno spazio. Base di uno spazio, metodo degli scarti successivi, completamento ad una base. Dimensione di uno spazio vettoriale. Somme dirette.
4. Generalità sulle matrici. Rango. Matrici ridotte e metodo di riduzione. Determinanti e loro proprietà. I teoremi di Laplace. Calcolo dell'inversa di una matrice quadrata. Teorema di Binet. Teorema di Kronecker. 5. Sistemi lineari, teorema di Rouché-Capelli. Risoluzione dei sistemi lineari col metodo di riduzione (di Gauss), incognite libere. Metodo di Cramer. Sistemi omogenei e sottospazio delle soluzioni. 6. Applicazioni lineari e loro proprietà. Nucleo ed immagine di un'applicazione lineare. Iniettività, suriettività, isomorfismi. Studio delle applicazioni lineari. Cambio di base, matrici simili. Autovalori, autovettori ed autospazi di un endomorfismo. Polinomio caratteristico. Dimensione degli autospazi. Indipendenza degli autovettori. Endomorfismi semplici e diagonalizzazione di matrici.
Geometria:
1. Geometria lineare nel piano. Coordinate cartesiane e coordinate omogenee. Rette e loro equazioni. Intersezioni tra rette. Coefficiente angolare. Distanze. Fasci di rette.
2. Geometria lineare nello spazio. Coordinate cartesiane e coordinate omogenee. I piani e loro equazioni. Le rette, loro rappresentazione. Elementi impropri. Proprietà di rette e piani. Fasci di piani.
3. Cambiamenti di coordinate nel piano, rotazioni e traslazioni. Coniche e matrici associate, invarianti ortogonali. Equazioni ridotte, riduzione di una conica a forma canonica. Classificazione delle coniche irriducibili. Studio delle coniche in forma canonica. Fasci di coniche.
4. Quadriche nello spazio e matrici associate. Quadriche irriducibili. Vertici e quadriche degeneri. Coni e cilindri, loro sezioni. Equazioni ridotte, riduzione di una quadrica a forma canonica. Classificazione delle quadriche non degeneri. Sezioni di quadriche con rette e piani. Circonferenza e sfera.
1. P. Bonacini, M. G. Cinquegrani, L. Marino. Algebra lineare: esercizi svolti. Cavallotto Edizioni, Catania, 2012. 2. P. Bonacini, M. G. Cinquegrani, L. Marino. Geometria analitica: esercizi svolti. Cavallotto Edizioni, Catania, 2012. 3. S. Giuffrida, A. Ragusa: Corso di Algebra Lineare. Il Cigno Galileo Galilei, Roma, 1998. 4. G.Paxia : Lezioni di Geometria. Spazio Libri, Catania, 2000.
|
Date di inizio e termine delle attività didattiche
|
Dal al |
Modalità di frequenza
|
Non obbligatoria
|
|
|