BELLA Angelo
(programma)
La nozione di spazio topologico. Insiemi aperti e chiusi. Basi e sistemi fondamentali di intorni. Costruzione di una topologia. Primo e secondo assioma di numerabilità. Funzioni continue ed omeoformismi. Sottospazi e proprietà ereditarie. Prodotto di spazi topologici: il caso finito e il caso generale. Spazi quoziente. Spazi metrici e spazi metrizzabili. Assiomi di separazione. Spazi normali e lemma di Urysohn. Il teorema di estensione di Tietze. Spazi compatti e loro proprietà fondamentali. Il teorema di Tychonoff. Il teorema di immersione. Una caratterizzazione fondamentale della completa regolarità. La nozione di compattificazione. Spazi connessi e loro proprietà. La connessione di un prodotto. Spazi loalmente compatti e compattificazione di Aleksandroff.
1. Appunti del corso redatti dal docente e distribuiti agli studenti durante il corso.
2. Per ulteriori approfondimenti il trattato: Topologia di M. Manetti e la monografia General Topology di R. Engelking.
|