Mutua da
|
1000998 ALGEBRA LINEARE E GEOMETRIA in Ingegneria Civile, Ambientale e Gestionale L-7 A - K MARINO LUCIA MARIA
(programma)
Algebra
1. Generalità sugli insiemi, operazioni. Applicazioni tra insiemi, immagine e controimmagine, iniettività, suriettività, applicazioni biettive. Insiemi con operazioni, le principali strutture geometriche: gruppi, anelli, campi.
2. Generalità sulle matrici. Rango. Determinanti e loro proprietà. I teoremi di Laplace*. Inversa di una matrice quadrata. Calcolo dell'inversa di una matrice quadrata. Teorema di Binet*. Matrici ridotte e metodo di riduzione. Prodotto di matrici. Sistemi lineari, Teorema di Rouché-Capelli. Risoluzione dei sistemi lineari col metodo di riduzione (di Gauss), incognite libere. Sistemi omogenei. Teorema di Cramer.
3. Spazi vettoriali e loro proprietà. Esempi. Sottospazi. Intersezione, unione e somma di sottospazi. Indipendenza lineare, relativo criterio. Generatori di uno spazio. Base di uno spazio, metodo degli scarti successivi, completamento ad una base. Lemma di Steinitz*, dimensione di uno spazio vettoriale. Formula di Grassmann*. Somme dirette. Teorema di Kronecker. Dimostrazione del Teorema di Rocuhé-Capelli. Sistemi omogenei e sottospazio delle soluzioni.
4. Applicazioni lineari e loro proprietà. Nucleo ed immagine di un'applicazione lineare. Iniettività, suriettività, isomorfismi. Lo spazio L(V,W), suo isomorfismo* con K^{m,n}. Studio delle applicazioni lineari. Cambio di base, matrici simili.
5. Autovalori, autovettori ed autospazi di un endomorfismo. Polinomio caratteristico. Dimensione degli autospazi. Indipendenza degli autovettori. Endomorfismi semplici e diagonalizzazione di matrici.
Geometria:
1. I vettori dello spazio ordinario. Somma di vettori, prodotto di un numero per un vettore. Prodotto scalare, prodotto vettoriale, prodotto misto. Componenti dei vettori ed operazioni mediante componenti. Geometria lineare nello spazio. Coordinate cartesiane e coordinate omogenee. I piani e loro equazioni. Le rette, loro rappresentazione. Elementi impropri. Proprietà angolari di rette e piani. Distanze. Fasci di piani. Geometria lineare nel piano. Coordinate cartesiane e coordinate omogenee. Rette e loro equazioni. Intersezioni tra rette. Coefficiente angolare. Distanze. Fasci di rette.
2. Cambiamenti di coordinate nel piano, rotazioni e traslazioni. Coniche e matrici associate, invarianti ortogonali. Equazioni ridotte, riduzione di una conica a forma canonica. Classificazione delle coniche irriducibili. Studio delle coniche in forma canonica. Circonferenze. Rette tangenti. Fasci di coniche e loro uso per determinare coniche particolari.
3. Quadriche nello spazio e matrici associate. Quadriche irriducibili. Vertici e quadriche degeneri. Coni e cilindri, loro sezioni. Equazioni ridotte, riduzione di una quadrica a forma canonica. Classificazione delle quadriche non degeneri. Sezioni di quadriche con rette e piani. Rette e piani tangenti.
Le dimostrazioni dei teoremi contrassegnati con * si possono omettere
Bonacini, Cinquegrani, Marino: Algebra Lineare: esercizi svolti Ed. Cavallotto
Bonacini, Cinquegrani, Marino: Geometria: esercizi svolti. Ed. Cavallotto
S. Giuffrida - A. Ragusa, Corso di Algebra Lineare, Il Cigno Galileo Galilei. G. Paxia, Lezioni di Geometria, Spazio Libri
|