Docente
|
RUSSO Giovanni
(programma)
Introduzione all'uso del calcolatore.
Introduzione all'uso del linguaggio Python. Enthought Canopy. Variabili ed istruzioni elementari. Cicli. Strutture dati. Moduli. Uso dei pacchetti matplotlib e numpy.
Rappresentazione in virgola mobile. I numeri di macchina. Troncamento ed arrotondamento. Operazioni di macchina. Cancellazione numerica. Ordine di accuratezza.
Algebra lineare numerica.
Richiami di algebra lineare: vettori, matrici, determinanti, matrice inversa. Norme di vettore e norme di matrice. Norme naturali e loro rappresentazione. Autovalori. Raggio spettrale e sue proprietà. Alcune matrici particolari. Metodi diretti per la risoluzione dei sistemi lineari: sistemi triangolari, metodo di eliminazione di Gauss, pivoting. Fattorizzazioni A=LU e PA=LU. Metodi compatti, fattorizzazione di Choleski e loro implementazione in python. Condizionamento di un sistema lineare. Numeri di condizionamento. Matrici sparse e loro rappresentazione. Autovalori ed autovettori: richiami. Metodi iterativi per la soluzione di sistemi lineari: metodi di Jacobi, metodo di Gauss-Siedel e metodo SOR. Criteri d'arresto. Metodi per punti e per blocchi (cenni). Decomposizione in valori singolari (cenni). Localizzazione degli autovalori: i teoremi di Gershgorin-Hadamard. Calcolo degli autovalori: il metodo delle potenze, ed il metodo delle potenze inverse.
Approssimazione di funzioni e dati.
Interpolazione polinomiale. Forma di Lagrange. Operatore lineare di interpolazione. Calcolo del polinomi di interpolazione. Formula di Newton delle differenze divise. Il resto dell'interpolazione. Polinomi di Chebyshev: formula ricorsiva, zeri, proprietà di minima norma. Teorema di Weierstrass sulla approssimazione di una funzione continua mediante polinomi (enunciato). Polinomi di Bernstein. Problema della convergenza di una successione di schemi interpolatori. Interpolazione mediante polinomi a tratti. Funzioni spline. Calcolo delle spline cubiche. Metodo dei minimi quadrati e applicazioni. Equazioni normali e loro interpretazione geometrica.
Soluzione di equazioni non lineari.
Concetti generali. Metodi di bisezione, delle secanti e di Newton. Teoria generale dei metodi iterativi per equazioni non lineari e problemi di punto fisso. Ordine di convergenza. Criteri d'arresto. Metodo di Aitken per metodi di ordine di convergenza uno e due.
Formule di quadratura.
Integrali pesati. Forma generale di una formula di quadratura. Ordine polinomiale. Formule interpolatorie. Teorema di convergenza. Formule di Newton-Cotes. Formule Gaussiane. Formule composite: trapezi e Simpson. Metodo di Romberg. Quadratura adattiva (cenni).
Nota bene. Qualora l'insegnamento venisse impartito in modalità mista o adistanza potranno essere introdotte le necessarie variazioni rispettoa quanto dichiarato in precedenza, al fine di rispettare il programmaprevisto e riportato nel syllabus.
Libri consigliati:
Il libro di testo consigliato per il corso di Calcolo Numerico è il seguente:
G.Naldi, L.Pareschi, G.Russo, Introduzione al calcolo scientifico, McGraw-Hill, 2001.
Ulteriori approfondimenti si trovano sui testi:
V.Comincioli, Analisi Numerica: metodi, modelli, applicazioni, McGraw-Hill, Milano, 1990. G. Monegato, Calcolo Numerico, Levrotto e Bella, Torino, 1985. A. Quarteroni, R. Sacco, F. Saleri, Matematica Numerica, Springer Italia, Milano, 1998.
|