Docente
|
FARINELLA GIOVANNI MARIA
(programma)
Basic Concepts:Machine Learning, Probability Theory, Supervised Learning, Unsupervised Learning, Classificazione, Regressione, Training/Validation/Test Set, Performance Evaluation, Data Normalization, Overfitting and Regularization, XOR Problem, Perceptron Linear Models for Regression:Linear Regression, Gradient descent algorithm,Learning Rateand Debugging, Polynomial Regression,Overfitting e Regularization for Linear Regression,Regressione Lineare in Pytorch, API ad oggetti di Pytorch, Monitoring del training mediante Visdom,Linear Regression Evaluation, Learning Algorithms Design Linear Models for Classification:Logistic Regression,Logistic Regression with Pytorch, Regularization for Logistic Regression, Stocastic Gradient Descent, Momentum for Gradient Descent, Multi-Class Classification, Classifiers Evaluation Softmax Classifier and python implementation Computational Graphs and Backpropagation Neural Networksand python implementation Deep Learning: Convolutional Neural Network and python implementation, Transfer Learning Advancet Deep Learning: Introduction to LSTM, Autoencoders, Metric Learning Python programming and Python Libraries for Machine Learning
R. O. Duda, P. E. Hart, D. G. Stork, "Pattern Classification", Wiley, 2000 C. Bishop, “Pattern Recognition and Machine Learning", Springer, 2006 E. Alpaydin, “Introduction to Machine Learning”, MIT Press, 2014 I. Goodfellow, Y. Bengio and A. Courville, "Deep Learning", MIT Press, 2016 Raul Rojas,Neural Networks - A Systematic Introduction, Springer, 1996 M. P. Deisenroth, A A. Faisal, and C. Soon On,Mathematics for Machine Learning, MIT Press, 2019
|