Docente
|
RUSSO Giovanni
(programma)
Richiami di teoria sui sistemi iperbolici.Propagazione ondosa. Richiami sulla singola equazione scalare. Soluzioni di viscosità e condizioni di entropia. Sistemi iperbolici: lineari, semilineari e quasi-lineari. Invariati di Riemann. Condizioni di salto e condizioni di entropia. Onde semplici.
Equazioni di Eulero della gas dinamica comprimibile.Deduzione delle equazioni di Eulero. Condizioni di Rankine-Hugoniot. Onde semplici in gas dinamica. Gas politropici. Gas dinamica insentropica. Problema di Riemann. Condizioni al contorno.
Metodi numerici per leggi di conservazione.Metodi ai volumi finiti. Medodi a tre punti: metodi upwind, metodo di Lax-Friedrichs e metodo di Lax-Wendroff (richiami). Metodo di Godunov e sue proprietà. La funzione di flusso numerica. Costruzione di metodi di alto ordine. Ricostruzioni di alto ordine essenzialmente non oscillatorie (ENO). Ricostruzioni WENO. Metodi alle differenze finite di tipo conservativo. Integrazione nel tempo: metodi Runge-Kutta SSP (Strongly Stability Preserving). Trattamento dei termini di sorgente. Metodi Runge-Kutta IMEX (IMplici-EXplicit) per l’integrazione temporale.
Fluidodinamica incomprimibile.Deduzione delle equazioni di Eulero e Navier-Stokes incomprimibili. Metodi alle differenze finite per equazioni di Eulero e Navier-Stokes in variabili primitive. Metodo delle proiezioni di Chorin e discretizzazione di tipo MAC (Marker and cell). Metodi di penalizzazione per problemi in domini con ostacolo. Formulazionevorticity-stream functionper le equazioni di Navier-Stokes.
Equazioni di acque poco profonde.Deduzione del modello di Saint-Venant per le acque poco profonde. Analogia con la gas dinamica isentropica. Metodi ai volumi finiti ed alle differenze finite per le equazioni di SV in una e due dimensioni spaziali.
Esercitazioni pratiche.Il corso prevede delle esercitazioni nelle quali vengono mostrate le implementazioni dei principali metodi svolti a lezione. In particolare, saranno implementati e confrontati alcuni metodi per la soluzione delle equazioni di Eulero comprimibili, e delle equazioni di Navier-Stokes incompressibili.
Nota bene. Qualora l'insegnamento venisse impartito in modalità mista o adistanza potranno essere introdotte le necessarie variazioni rispettoa quanto dichiarato in precedenza, al fine di rispettare il programmaprevisto e riportato nel syllabus.
I seguenti sono alcuni testi che trattano argomenti di CFD e che potranno essere utilizzati durante il corso.
John D. Anderson Jr., Computational Fluid Dynamics, the basics with applications, McGraw Series in Mechanical Engineering, 1995. Un classico della CFD. Scritto da un professore d’ingegneria aeronautica. Molto vicino alle applicazioni. Non particolarmente sofisticato dal punto di vista matematico. Un po’ datato. Dimitris Drikakis, William Rider, High-Resolution Methods for Incompressible and Low-Speed Flows, Springer, 2005. Abbastanza aggiornato, presenta una descrizione semplice della formulazione matematica delle equazioni della gas dinamica. Joel H. Ferziger, Milovan Peric, Computarional Methods for Fluid Dynamics, Springer, 2002. Di orientazione prettamente numerica, molto dettagliato sugli schemi, ma piuttosto carente sugli aspetti modellistici e matematici. Randall Le Veque- Finite Volume Methods for hyperbolic problems, Cambridge University Press, 2004. Specializzato sui metodi ai volumi finiti per sistemi di iperbolici di leggi di conservazione. Randall Le Veque - Numerical methods for conservation laws, Lecture Notes in Mathematics, ETH Zürich, Birkhaeuser, Second edition, 1999. Eccellente per dare una trattazione matematica dei sistemi di leggi di conservazione e per alcuni dei recenti metodi numerici di tipo shock-capturing per svariati sistemi di leggi di conservazione. Roger Peyret, Thomas D. Taylor, Computational Methods for Fluid Flows, Springer-Verlag, 1983. Testo sintetico, tratta prevalentemente temi di fluidodinamica incomprimibile. Molto avanzato quando è uscito, adesso è anch’esso piuttosto datato. Pieter Wesseling, Principles of Computational Fluid Dynamics, Springer Series in Computational Mathematics, 1991. Buon testo introduttivo. Contiene molto più materiale di quanto possa essere affrontato nel corso. G.B.Whitham, Linear and nonlinear waves, John Wiley & Sons, 1974. Ottimo testo sui modelli matematici che descrivono fenomeni ondulatori.
|